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ABSTRACT Neglected diseases, such as Chagas disease,
African sleeping sickness, and intestinal worms, affect millions of
the world’s poor. They disproportionately affect marginalized
populations, lack effective treatments or vaccines, or existing
products are not accessible to the populations affected.
Computational approaches have been used across many of these
diseases for various aspects of research or development, and yet
data produced by computational approaches are not integrated
and widely accessible to others. Here, we identify gaps in which
computational approaches have been used for some neglected
diseases and not others. We also make recommendations for the
broad-spectrum integration of these techniques into a neglected
disease drug discovery and development workflow.
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INTRODUCTION

Neglected diseases are a group of biologically unrelated
diseases that are grouped together because they

disproportionately affect marginalized populations, lack
effective treatments or vaccines, or existing products are
not accessible to the populations affected (1). While the
definition of a neglected disease varies, the category
generally includes: tuberculosis, malaria, Chagas disease,
African sleeping sickness, schistosomiasis, leishmaniasis
and others for which there is a lack of economic incen-
tives or “market” to incentivize product development
(2–4). Many of these pathogens, whether bacterial, par-
asitic, or viral, have complex life cycles and diverse
approaches for evading the host immune system, render-
ing the development of new drugs and vaccines all the
more challenging. Furthermore, these diseases receive a
relatively small amount of research investment ($80 M to
approximately $500 M) from governments and pharma-
ceutical companies in the developed world (Fig. 1), com-
pared with the billions of dollars invested in other dis-
eases, including cancer and heart disease. The scientific
challenges and limited funding available for neglected
disease drug discovery and development highlight the
importance of exploring alternative, lower cost ap-
proaches to advance this process. Free, public databases
that provide information on neglected disease drug
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discovery, funding, and the pertinent biology and chem-
istry are increasingly available (Table I). Predictive com-
putational approaches have also been used to propose
and test hypotheses before investing in costly and time
intensive experiments for neglected diseases. While many
databases and computational models exist in isolation
within individual publications or websites, few have been
extended to support analysis across neglected diseases
(5,6) (Table II) to leverage similarities amongst advancing
chemical tools/drug discovery compounds and/or
targeted biological entities (proteins and/or pathways).
Little or no connection between data sources and models
exists, even for the most well-funded of the neglected diseases,
such as tuberculosis (7) and malaria. Recent assessments of the
use of computational methods (7–10), and advancing applica-
tion of cheminformatics and bioinformatics in tuberculosis
research begs the question, have these tools been effectively
applied to other neglected diseases? Are there other compu-
tational approaches that should be additionally considered,
and are there gaps that what would prevent their broader
application and integration?

CHEMINFORMATICS: SAVING TIME AND MONEY

Cheminformatics, defined as the implementation of computa-
tional methodologies to learn from data describing the biolog-
ical activity of molecules, exemplifies the important role that
computational approaches can play in drug discovery (11).
Applying computer algorithms to suggest new molecules that
act on a specific targeted protein/pathway or disease/organism
can narrow down the chemistry space to be explored by
empirical high-throughput screening (12). Such approaches like
docking have been successful in HIV drug discovery for the
integrase inhibitor raltegravir (13) as well as many other im-
portant targets (14). The use of cheminformatics for tubercu-
losis drug discovery has been summarized (7,15,16) and can be
readily implemented early in the process as a means to limit the
number of compounds needing to be screened and therefore
saving time and money (9,17). Such cheminformatics ap-
proaches have also been applied to other tropical dis-
eases ((18–21), Table II). Additional computational
methods are assumed to have similar relative cost sav-
ings by eliminating the need for some experiments or
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Fig. 1 Analysis of publications in
PubMed (a) and global funding (b)
for neglected diseases. The search
query (for which “Neglected
disease” is replaced by the name of
the neglected disease) in PubMed
was “Neglected disease”[Mesh]
AND (“Computational
Biology”[Mesh] OR “Databases,
Factual”[Mesh] OR “Data
Mining”[Mesh] OR “Bayes
Theorem”[Mesh] OR “Models,
Molecular”[Mesh]). The global
funding data was obtained from
G-FINDER (38). Trypanosomiasis
includes Chagas disease, sleeping
sickness, and leishmanisis.
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testing many hypotheses which would not normally be
possible without such models.

USING COMPUTATIONAL MODELS ACROSS
NEGLECTED DISEASES

Taking a pragmatic approach, ligand-based computa-
tional models that are being widely applied for finding
novel molecules for malaria (22) and tuberculosis (7–10)

(using a diverse array of modeling or machine learning
algorithms) are also readily extensible to other diseases,
provided sufficient data are available. In addition, learn-
ing from targets in one disease and extending to anoth-
er is also possible, albeit with caveats requiring the
respective protein active sites to have some degree of
similarity (homology or identity). Differences in target
essentiality and vulnerability may exist across each dis-
ease in addition to unique permeability and metabolism
issues pertinent to each organism. Besides these two
groups of computational models, it is worth considering
the status of the other computational models across an
array of neglected diseases.

We have assessed the literature and thematically
grouped computational approaches for neglected diseases
to discern gaps (Table II). While some of the computa-
tional approaches require techniques that may be linked
or are related (protein-protein interaction networks, host-
protein interactions and metabolic modeling) others are
not directly related to these and may form a second group
(computational epidemiology, clinical deployment/diagnostic
modeling and finding novel compounds). While we found
computational modeling for host-pathogen interactions
had been used in tuberculosis and malaria (Table II)
they were generally absent in other kinetoplastid and
helminth diseases. Protein-protein interaction network
models were absent in helminth diseases, and there is a
general paucity of biological data for these and
kinetoplastids, which may limit computational models
(23). While malaria biomarkers are known and used in
rapid diagnostic tests, there is still a need for biomarkers
that predict progression of malaria to severe disease.
Chagas disease requires biomarkers to follow up

Table I Useful Databases and Resources for Neglected Diseases

Data source Website

TDR Targets http://tdrtargets.org

WIPO Re:Search http://www.wipo.int/research/en/search/

GNTD http://www.gntd.org/login.html

SciDev.Net http://www.scidev.net/en/health/neglected-diseases/

ChEMBL NTD and
ChEMBL Malaria

https://www.ebi.ac.uk/chemblntd, https://www.
ebi.ac.uk/chembl/malaria/

DrugEBIlity https://www.ebi.ac.uk/chembl/drugebility

G-FINDER https://g-finder.policycures.org/gfinder_report/
http://policycures.org/g-finder2012.html

Global Health Primer http://www.globalhealthprimer.org/Diseases.aspx

WHO | Tropical
diseases

http://www.who.int/topics/tropical_diseases/en/

NIAID on neglected
tropical diseases

http://www.niaid.nih.gov/topics/tropicaldiseases/
Pages/Default.aspx

CDC on neglected
tropical diseases

http://www.cdc.gov/globalhealth/ntd/

DNDi http://www.dndi.org/

CDD www.collaborativedrug.com

Table II Representative Examples of Computational Models Applied Across Neglected Tropical Diseases

Computational models Tuberculosis Malaria Kinetoplastid diseases
(Chagas, HAT, leishmaniasis)

Helminth infections (STH,
filarial worms, schistosomiasis)

Metabolic modeling Y (39–41) Y (42–45) Ya (46) Yb (42)

Host-pathogen interactions Y (47) Y (43,48–50) N N

Protein-protein Interaction Networks Y (51,52) Y (23,50,53) Y (54) N

Computational epidemiology Y (55) Y (56) Y (57) Y(58,59)

Prioritizing drug targets Y (39,40,51) 57 Y (43–45,60) Y(60,61) Y(60,61)

Predicting targets of active compounds Y (62–65) Y (66) Y (67) Y(68)

Finding novel compounds Y(7,9,10,62,69–73) Y (18,22,74,75) Y (76,77) Y(78)

Diagnostic biomarker discovery Y(39) N Y (79,80) N

Clinical deployment / diagnostic modeling Y(81) Y(82) Y (83,84) N

Model the disease process Y(85,86) N N N

a LeishCyc (Tier1), TrypCyc (Tier2)
b BioCyc Tier 2 database for schistosoma mansoni

HAT human African trypanosomiasis, STH soil transmitted helminthiases
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treatments (e.g. those in clinical trials), diagnosing disease
progression during the chronic stage, and in diagnosing
congenital infections in newborns. A new diagnostic is a
priority for schistosomiasis, so the observation of gaps
can guide the next steps in performing further computa-
tional modeling. In addition, clinical deployment/
diagnostic modeling was absent in helminths, while
modeling the disease process appears to have been used
with tuberculosis but not the other diseases (Table II).

Isolated computational models will likely have a di-
minished impact compared to efforts that combine ap-
proaches within a single disease, such as for malaria and
tuberculosis, which have the greatest breadth of compu-
tational models available (Fig. 1b, (7,15)). For example,
the integration of metabolic modeling, host pathogen
interactions and protein-protein interaction network ef-
forts could be advantageous. Similarly prioritizing drug
targets, finding novel targets, diagnostic biomarker dis-
covery, and predicting the targets of active compounds
are inter-related and could be combined (Table II).
Using computational models and data from one disease
to make inferences for another disease (where there
might be a lack of data for models) could be exploited
if issues of model compatibility are overcome. This
would be a hypothesis worth testing, although the types
of models developed are frequently different.

LIMITATIONS AND RECOMMENDATIONS

What are the limitations of computational models? Very few
of the studies, beyond those for tuberculosis, have performed
validation of the predictions. While there are many examples
of people assessing performance of computational models in
general, there are few if any real examples of impact assess-
ments for computational approaches as a whole and many of

these relate to virtual screening efforts (14,24). The lack of
validation of model predictions could be because the compu-
tational scientists have found it challenging to connect with
experimental researchers interested in collaborating for test-
ing their hypotheses. A solution needs to connect these differ-
ent groups of scientists; efforts in social media (25) and collab-
orative consortia (26) may help facilitate this process for
neglected tropical diseases.

A key limitation is the scarcity of data available to drive
computational models for neglected diseases. While high-
throughput screening has been performed on many millions
of compounds for tuberculosis and malaria, data in the public
domain is in the hundreds of thousands (27–31). For
trypanosomal diseases, such as Chagas disease, public data is
likely in the low thousands of compounds (32–36) screened,
while for other diseases it may be far less. This clearly presents a
problem for using machine learning models for virtual screen-
ing to find actives for each disease, for example. Similarly, the
number of compounds with targets identified (or for which
target-based large datasets have been created) is in the many
hundreds for tuberculosis (10), and malaria. For other
neglected diseases, the number of compounds with identified
targets is far lower. This will hamper the generation of accurate
target prediction algorithms that learn from prior data, thus
requiring other approaches. Access to crystal structures for
targets in each species would also assist in drug discovery and
target prediction for new molecules. However, homology
across species would be a limiting factor for using a model for
a target inmalaria tomake predictions in kinetoplastid diseases.

Strategies to share computational models for neglected
diseases more broadly may include using mobile devices and
apps created for them. An example, like TB Mobile used to
predict potential targets of molecules derived from phenotypic
screening (37), could be applied to other diseases. Considering
current existing neglected disease computational models may
help us to imagine a future when they are integrated and

Fig. 2 Approximate positioning of
computational models in the drug
discovery and development
workflow.
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globally accessible to researchers on different hardware plat-
forms. We suggest that first we need to fill the gaps we have
identified by implementing the models in the appropriate
positions in the drug discovery and development workflow
(Fig. 2) for the respective neglected diseases and where neces-
sary generate the appropriate data that is needed for their
development.
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